ON THE FUNDAMENTAL NUMBER OF THE ALGEBRAIC

NUMBER-FIELD $k(\sqrt[n]{m})$

BY

JACOB WESTLUND

Introduction.

The object of the present paper is the determination of an integral basis and the fundamental number of the algebraic number-field $k(\sqrt[p]{m})$ generated by the real pth root of m, where m is a positive integer greater than unity which is not divisible by the pth power of an integer, and where p is any odd prime. The case p=3 has already been discussed by DEDEKIND.* The conjugate values of $\sqrt[p]{m}$ being $\sqrt[p]{m}$, $\rho\sqrt[p]{m}$, \cdots , $\rho^{p-1}\sqrt[p]{m}$, where $\rho=e^{2\pi i/p}$, the number-fields $k(\rho\sqrt[p]{m})$, \cdots , $k(\rho^{p-1}\sqrt[p]{m})$ are all different from $k(\sqrt[p]{m})$.

In order to obtain all possible number-fields of this type we let m run through all positive integers which are not divisible by the pth power of a prime. But the fields generated in this way are not all distinct. For any positive integer m which is not divisible by the pth power of a prime may be expressed in one way only in the form

$$m \stackrel{\cdot}{=} a_1 a_2^2 a_3^2 \cdots a_{p-1}^{p-1}$$

where $a_1 a_2 \cdots a_{p-1}$ is not divisible by the square of a prime. If we then set

$$\alpha_i = \sqrt[p]{a_1^{i_1} a_2^{i_2} a_3^{i_3} \cdots a_{p-1}^{i_{p-1}}}$$

where $i_* \equiv si \pmod p$ and $0 < i_* < p$ for $s = 1, 2, 3, \dots, p-1$, it is evident that $\alpha_1, \alpha_2, \dots, \alpha_{p-1}$ are algebraic integers in $k(\alpha_1)$, and hence $k(\alpha_1), k(\alpha_2), \dots, k(\alpha_{p-1})$ are identical, while $k(\alpha_1)$ is a primitive field.

1. Rational basis.

As a rational basis of $k(a_1)$ we may take either

$$1, \alpha_1, \alpha_1^2, \cdots, \alpha_1^{p-1}$$

or

$$1, \alpha_1, \alpha_2, \cdots, \alpha_{n-1}.$$

^{*}Über die Anzahl der Idealklassen in reinen kubischen Zahlkörpern, Journal für die reine und angewandte Mathematik, vol. 121 (1899).

Denote the discriminants of these bases by D_1 and D_2 , respectively. We have

$$D_1 = \begin{vmatrix} 1 & \alpha_1 & \cdots & \alpha_1^{p-1} \\ 1 & \rho \alpha_1 & \cdots & \rho^{p-1} \alpha_1^{p-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \rho^{p-1} \alpha_1 & \cdots & \rho^{(p-1)^2} \alpha_1^{p-1} \end{vmatrix}^2 = m^{p-1} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & \rho & \cdots & \rho^{p-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \rho^{p-1} & \cdots & \rho^{(p-1)^2} \end{vmatrix}^2$$

Hence *

$$D_{\scriptscriptstyle 1} = (-1)^{\frac{1}{2}(p-1)} p^p m^{p-1}.$$

In a similar way we obtain

$$D_2 = (-1)^{\frac{1}{2}(p-1)} p^p (a_1 a_2 \cdots a_{p-1})^{p-}.$$

If Δ be the fundamental number of $k(\alpha_1)$, we must have $D_2 = n^2 \Delta$ where n is a rational integer. Hence

$$\Delta = (-1)^{\frac{1}{2}(p-1)} p \left[\frac{(pa_1 a_2 \cdots a_{p-1})^{\frac{1}{2}(p-1)}}{n} \right]^2 = (-1)^{\frac{1}{2}(p-1)} p d^2$$

where d is a rational integer, and this shows that Δ contains the factor p.

2. Ideal Prime Factors of p and m.

Let q be a prime factor of m and Q an ideal prime factor of q. Then since $\alpha_1^p = q^i r$, where r is prime to q and 0 < i < p, it follows that α_1 is divisible by Q. Suppose that Q^i is the highest power of Q contained in q. Then α_1^p must be divisible by Q^n and $si \equiv 0 \pmod{p}$. Hence s = p and $(q) = Q^p$, i. e., every prime factor of m is equal to the pth power of a prime ideal of the first degree.

Let us next consider the prime p. If p is a factor of m it comes under the case already considered. Suppose then that p is not contained in m. Since p is a factor of the fundamental number, it is divisible by the square of a prime ideal P. Now consider the integer $\mu = a_1 - b$, where $b = a_1 a_2^2 \cdots a_{p-2}^{p-2}$. We have

$$(\mu + b)^p - ba_{n-1}^{p-1} = 0$$

or, if we set $d = b^{p-1} - a_{p-1}^{p-1}$,

$$\mu^{p} + pb\mu^{p-1} + \cdots + pb^{p-1}\mu + bd = 0.$$

Since $d \equiv 0 \pmod{p}$ it follows that μ^p is divisible by p and μ by P and hence d is divisible by P^3 . Two cases arise according as d is divisible by p^2 or not.

I. d not divisible by p^2 . In this case p must be divisible by P^3 . Hence, if p > 3, d must be divisible by P^4 and therefore p divisible by P^4 . Reasoning

^{*} PASCAL, Determinanten, p. 139.

in this way we find that p must be divisible by P^p . Hence $(p) = P^p$, i. e., if p is prime to m and $d = b^{p-1} - a_{p-1}^{p-1}$ not divisible by p^2 , then p is equal to the p-th power of a prime ideal of the first degree.

II. d divisible by p^2 . Let $p^*(s \ge 2)$ be the highest power of p contained in d and P^r the highest power of P contained in μ . The equation satisfied by μ may be written

$$\mu(\mu^{p-1} + p\beta) + bd = 0$$
,

where β is prime to P. If r were greater than unity, μ^{p-1} would be divisible by a higher power of P than P^p , and since p cannot contain a higher power of P than P^p , it follows from the equation above that μ would be divisible by p. But if μ were divisible by p, its conjugates would be divisible by p, but this is impossible, since the coefficient of μ in the equation above contains only the first power of p. Hence r=1. It is then easily seen that p must be divisible by P^{p-1} and by no higher power of p. Hence if p is prime to m, and $p^{p-1}-q^{p-1}$ is divisible by p^2 , we have p^2 , where p^2 and p^2 are different prime ideals of the first degree.

3. Integral basis.

Any integer ω in $k(a_1)$ may be expressed in the form

$$\omega = \frac{x_0 + x_1 \alpha_1 + \cdots + x_{p-1} \alpha_{p-1}}{D_2},$$

where x_0, x_1, \dots, x_{p-1} are rational integers. Let q be a prime factor of a, and let $(q) = Q^p$. Then the highest power of Q contained in α , is Q^n , where $i_* \equiv si \pmod{p}$ and $0 < i_* < r$. Hence x_0 must be divisible by Q and hence by Q. Denote by q_{r_1} , q_{r_2} , ..., $q_{r_{p-1}}$ the numbers q_1 , q_2 , ..., q_{p-1} arranged according to increasing powers of Q. It then follows that x_{r_1} must be divisible by Q and hence by Q. In the same way we find that x_{r_2} , ..., $x_{r_{p-1}}$ are divisible by Q. It is then easily seen that Q may finally be written in the form

$$\omega := \frac{x_0 + x_1 \alpha_1 + \cdots + x_{p-1} \alpha_{p-1}}{p^p},$$

where x_0, x_1, \dots, x_{p-1} are rational integers.

If p is a factor of m we proceed as above and find that

$$\omega = y_0 + y_1 \alpha_1 + \cdots + y_{p-1} \alpha_{p-1},$$

where y_0, y_1, \dots, y_{p-1} are rational integers.

If p is prime to m, two cases arise, according as $d = b^{p-1} - a_{p-1}^{p-1}$ is divisible by p^2 or not.

I. d not divisible by p^2 . Introducing the algebraic integer $\mu = \alpha_1 - b$ mentioned above and making use of the fact that $\alpha_i = \alpha_1^i/c_i$, where c_i is a rational

integer prime to p, we obtain

$$c\omega = \frac{y_0 + y_1\mu + \cdots + y_{p-1}\mu^{p-1}}{p^p}.$$

In this case we have $(p) = P^p$ and, as is easily seen, μ is divisible by P but not by P^2 . Reasoning in exactly the same way as above we find that y_0, y_1, \dots, y_{p-1} are all divisible by p. Hence we finally get

$$c\omega = z_0 + z_1 \mu + \cdots + z_{\nu-1} \mu^{\nu-1},$$

where z_0, z_1, \dots, z_{p-1} are rational integers. But since all the prime factors of c are contained in m, it follows that ω may be written in the form

$$\omega = x_0 + x_1 \alpha_1 + \cdots + x_{n-1} \alpha_{n-1},$$

where x_0, x_1, \dots, x_{p-1} are rational integers. We then have the following result: If $b^{p-1} = a_{p-1}^{p-1}$ is not divisible by p^2 , the p numbers $1, \alpha_1, \alpha_2, \dots, \alpha_{p-1}$ form an integral basis of $k(\alpha_1)$ and $\Delta = D_2 = (-1)^{p-1/2} p^p (a_1 a_2 \dots a_{p-1})^{p-1}$.

II. d divisible by p^2 . In this case we know that $(p) = P^{p-1}Q$. We also know that μ^p is divisible by p, and hence μ is divisible by PQ and μ^{p-1} divisible by pQ^{p-2} . But

$$\begin{split} \mu^{p-1} &= (\alpha_1 - b)^{p-1} = \alpha_1^{p-1} - (p-1)\alpha_1^{p-2}b \cdots + b^{p-1} \\ &= \left[\alpha_1^{p-1} + \alpha_1^{p-2}b + \cdots + \alpha_1b^{p-2} + 1\right] \\ &- \left[p\alpha_1^{p-2}b - \left\{\frac{(p-1)(p-2)}{2!} - 1\right\}\alpha_1^{p-3}b^2 + \cdots - b^{p-1} + 1\right] \end{split}$$

and since $b^{p-1} \equiv 1 \pmod{p}$, it follows that

$$\gamma = \frac{\alpha_1^{p-1} + \alpha_1^{p-2}b + \dots + \alpha_1b^{p-2} + 1}{p}$$

is an algebraic integer. We shall now prove that the p numbers

$$\gamma$$
, α_1 , α_2 , \cdots , α_{p-1}

form an integral basis of $k(\alpha_1)$. It is evident that these numbers form a rational basis. Denoting the discriminant of this basis by D_3 we get the following value

$$D_3 = (-1)^{p-1/2} p^{p-2} (a_1 a_2 \cdots a_{p-1})^{p-1}.$$

Now any algebraic integer ω may be written in the form

$$\omega = \frac{x_0 \gamma + x_1 \alpha_1 + \dots + x_{p-1} \alpha_{p-1}}{D_p}$$

where x_0, x_1, \dots, x_{p-1} are rational integers. It is easily seen that x_0 must be

divisible by D_3 . For, denoting by ω , ω' , ..., $\omega^{(p-1)}$ the conjugate values of ω , we have

$$\omega + \omega' + \cdots + \omega^{(p-1)} = \frac{x_0}{D_*}.$$

Hence x_0 is divisible by D_3 . Let us then consider the algebraic integer

$$\omega_1 = \frac{x_1 \alpha_1 + \cdots + x_{p-1} \alpha_{p-1}}{D_{\bullet}}.$$

If q be a prime factor of m we infer in the same way as above that x_1, \dots, x_{p-1} are divisible by q, and hence that ω_1 may be written in the form

$$\omega_1 = \frac{y_1 \alpha_1 + \cdots + y_{p-1} \alpha_{p-1}}{p^{p-2}}.$$

Replacing α_i by $\mu + b$ we get

$$p^{p-2}c\omega_1 = z_0 + z_1\mu + \cdots + z_{p-1}\mu^{p-1}$$

where z_0, z_1, \dots, z_{p-1} are rational integers and c is prime to p. By a simple argument it can then be shown that z_0, z_1, \dots, z_{p-1} and hence also y_1, y_2, \dots, y_{p-1} must be divisible by p and that ω may finally be written in the form

$$\omega = x_0 \gamma + x_1 \alpha_1 + \cdots + x_{p-1} \alpha_{p-1}.$$

Hence we have the following result: If $b^{p-1} = a_{p-1}^{p-1}$ is divisible by p^2 , the p numbers γ , α_1 , α_2 , \cdots , α_{p-1} form an integral basis of $k(\alpha_1)$ and

$$\Delta = D_3 = (-1)^{p-1/2} p^{p-2} (a_1 a_1 \cdots a_{p-1})^{p-1}.$$

PURDUE UNIVERSITY.